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I. Introduction and motivation

AdS/CFT gives us our most concrete definition
of non-perturbative quantum gravity.

In general, and in particular in 2d, CFTs are 
relatively well understood (compared to

quantum gravity).

Natural question:  which 2d CFTs admit
large-radius gravity duals?

Thursday, December 18, 14



There have been interesting recent works aimed
at clarifying this question.

In general, a 2d CFT has a torus partition function
which is modular invariant:  

Hartman, 
Keller,
Stoica

You see that for eigenstates of the “Hamiltonian” it 
becomes obvious that this is just:

Tr e��H , � ⇠ 2⇡R

Now instead of a particle moving in imaginary time, 
consider a string:

There are now two parameters that fix the shape of
the torus, instead of just a radius.

Monday, October 14, 13

Z(q, q̄) = Tr
⇣
qL0 q̄L̄0

⌘
, q = e2⇡i⌧
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However, it is in general difficult to compute.  And if the
CFT comes with exactly marginal operators, Z of course

depends sensitively on the point in moduli space one 
chooses.

Is there a cruder measure which is:

a) calculable

b) can tell us if the CFT admits a gravity
description anywhere in its moduli space?
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We won’t succeed in constructing a fool-proof such
measure.  But we will make some simple observations
about one such candidate here, and describe results
of computations checking several canonical classes

of 2d CFTs.

II.  The elliptic genus

We will sacrifice some generality by considering 2d
theories with some amount of supersymmetry.

This is advantageous because it allows one to define
supersymmetric indices.
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The canonical example is the Witten index.

Consider a supersymmetric quantum mechanics 
theory with a supercharge satisfying

Q2 = 0, {Q,Q†} = H

Assume the theory also has a fermion # symmetry,
and Q is odd.

Then one can easily prove two powerful statements:
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-- all states have non-negative energy

-- states at positive energy are paired by
the action of Q 

Mathieu Moonshine 

• The Witten index 
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Now, one can define an index:
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(Note: I avoid here, and later, discussing subtleties that can arise when 
the spectrum is not discrete.  These are important in appearance of e.g. 

mock modular forms in physics.)

The Witten index is just a number.  A quantity with more
information -- an entire q-series -- is available in 

supersymmetric 2d QFTs.

We’ll mostly focus on theories with at least (2,2) 
supersymmetry. 

This means that each chirality has generators

T,G+, G�, J .
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In any such theory we can define the elliptic genus:

AdS3 ⇥ S3 ⇥K3

Famous examples including Calabi-Yau sigma models,
and the Hilbert scheme of N points on a K3 surface, dual 

to                          gravity.

Unpacking the right-moving stuff, we
see it is a right-moving Witten index!

So - in theories with discrete spectrum - this will give
us a holomorphic modular object.

ZEG(⌧, z) = TrRR

⇣
(�1)J0+FRqL0yJ0 q̄L̄0

⌘
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In fact, it is what is known as a weak Jacobi form of 
weight 0 and index c/6.  

going o↵ to infinite dimension, and simple product manifolds. As the latter two classes of

examples fail, we see that the bound does have teeth – there are simple examples of (2,2)

superconformal field theories at large central charge that violate it. In §5, we attempt to

quantify “the fraction of supersymmetric theories at large central charge which admit a

gravity dual,” using a natural metric on a relevant (suitably projectivized) space of weak

Jacobi forms.

II. MODULARITY PROPERTIES

We can define the following elliptic genus for any 2d SCFT with at least (0, 1) supersym-

metry. Denote by Ln, L̄n the left and right Virasoro generators, F̄ the right-moving fermion

number, and J
0

the left-moving U(1) charge operator, we define

ZEG(⌧, z) = TrH(�1)
¯F+J0qL0�c

L

/24q̄
¯L0�c

R

/24yJ0 . (II.1)

Here, q = e2⇡i⌧ and y = e2⇡iz and cL, cR denotes the left- and right-moving central charges

as usual .

In the cases of interest to us, the factor of (�1) ¯F which survives in (II.1) kills the anti-

holomorphic dependence, and the elliptic genus is a purely holomorphic function of ⌧ . In

fact, much more is true. Using standard modular invariance properties one can show that

the elliptic genus of a SCFT defined above transforms nicely under the group SL
2

(Z)nZ2.

In particular, it is a so-called weak Jacobi form of weight 0 and index cL/6. For instance,

supersymmetric sigma models for Calabi-Yau targets of complex dimension 2m have elliptic

genera that are weight 0 weak Jacobi form of index m.

A weak Jacobi form of index m 2 Z and weight w is a holomorphic function �(⌧, z) on

H⇥ C which first of all satisfies the condition

�

✓
a⌧ + b

c⌧ + d
,

z

c⌧ + d

◆
= (c⌧ + d)we2⇡im

cz

2

c⌧+d�(⌧, z) ,

0

@a b

c d

1

A 2 SL(2,Z) (II.2)

�(⌧, z + `⌧ + `0) = e�2⇡im(`2⌧+2`z)�(⌧, z) , `, `0 2 Z . (II.3)

Apart from the modular transformation (II.2), a Jacobi form also satisfies the elliptic trans-

formation (II.3) which can be understood in terms of the spectral flow symmetry in the

presence of an N � 2 superconformal symmetry.

3

III.  Facts about weak Jacobi forms

A weak Jacobi form is a holomorphic function on
which satisfies:

       

H⇥ C

c.f. Dabholkar,
Murthy, Zagier
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These invariances imply in particular that we may
expand the function as:

The invariance of �(⌧, z) under ⌧ ! ⌧ + 1 and z ! z + 1 implies a Fourier expansion

�(⌧, z) =
X

n,`2Z
c(n, `)qny`, (II.4)

and the transformation under ( �1 0

0 �1

) 2 SL
2

(Z) shows

c(n, `) = (�1)wc(n,�`). (II.5)

Moreover, the elliptic transformation (II.3) can be used to show that the coe�cients

c(n, `) = Cr(D(n, `)) , D(n, `) = `2 � 4mn

depend only on the so-called discriminant D(n, `) and r 2 Z/2mZ and r = ` (mod 2m).

Note that D(n, `) is negative the polarity, defined in [11] as 4mn� `2.

In other words, a Jacobi form admits the expansion

�(⌧, z) =
X

r (mod 2m)

hm,r(⌧)✓m,r(⌧, z) (II.6)

in terms of the index m theta functions,

✓m,r(⌧, z) =
X

k2Z
k=r mod 2m

qk
2/4myk. (II.7)

Explicitly, we have

hm,r(⌧) =
X

n

c(n, r)q�D(n,r)/4m.

Recall that the vector-valued function

✓m(�1

⌧
,�z

⌧
) =

p�i⌧ e

✓
mz2

⌧

◆
S ✓m(⌧, z), ✓m(⌧ + 1, z) = T ✓m(⌧, z), (II.8)

where S ,T are the 2m⇥ 2m unitary matrices with entries

Srr0 =
1p
2m

e

✓
rr0

2m

◆
, (II.9)

Trr0 = e

✓
r2

4m

◆
�r,r0 . (II.10)

From this we can see that h = (hm,r) is a 2m-component vector transforming as a weight

w � 1/2 modular form for SL
2

(Z). In particular, an elliptic genus with w = 0 of a theory

with central charge c = 6m can be written as

ZEG(⌧, z) =
X

r2Z/2mZ

Zr(⌧)✓m,r(⌧, z) (II.11)

4
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✓
r2

4m

◆
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From this we can see that h = (hm,r) is a 2m-component vector transforming as a weight
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(Z). In particular, an elliptic genus with w = 0 of a theory
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ZEG(⌧, z) =
X

r2Z/2mZ

Zr(⌧)✓m,r(⌧, z) (II.11)

4

Define the polarity of a given term by:

D(n, `) = `2 � 4mn = �p(n, `)

This is useful for the following reasons:
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L0 ! L0 + ✓J0 + ✓2m

J0 ! J0 + 2✓m

This allows one to relate all Fourier coefficients to those
with |l|  m .

2.  One can define the polar part of the Jacobi form: the
sum of terms with negative polarity.

3.  The full polar part of the form can be determined by
just the terms in the polar region      :

1.  The theories we consider have spectral flow invariance:

Pm
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with c(n, !) = (−1)wc(n,−!). It follows from the spectral flow identity that c(n, !) = 0

for 4mn − !2 < −m2. Following [22], we denote by J̃w,m the vector space of weak Jacobi

forms of weight w and index m. A Jacobi form is then a weak Jacobi form whose polar

part vanishes (see below).

Suppose we are given an integer m ∈ Z+. If (!, n) ∈ Z2 is a lattice point we refer

to its polarity as p = 4mn − !2. If φ ∈ J̃0,m let us define the polar part of φ, denoted

φ−, to be the sum of the terms in the Fourier expansion corresponding to lattice points of

negative polarity. By spectral flow one can always relate the degeneracies to those in the

fundamental domain with |!| ≤ m. If we impose the modular transformation (2.8) with

−1 ∈ SL(2, Z), which implements charge conjugation, then c(n, !) = c(n,−!) and therefore

the polar coefficients which cannot be related to each other by spectral flow and charge

conjugation are c(n, !) where (!, n) is valued in the polar region P (of index m), defined to

be

P(m) := {(!, n) : 1 ≤ ! ≤ m, 0 ≤ n, p = 4mn − !2 < 0} . (2.11)

For an example, see figure 1.

n

m

!

Figure 1: A cartoon showing polar states (represented by “•”) in the region P(m). Spectral flow
by θ = 1

2 relates these states to particle states in the NS sector of an N = 2 superconformal field
theory which are holographically dual to particle states in AdS3.

Given any Fourier expansion

ψ(τ, z) =
∑

!,n∈Z

ψ̂(n, !)qny! (2.12)

we define its polar polynomial (of index m) to be the sum restricted to the polar region

P(m):

Pol(ψ) :=
∑

(!,n)∈P(m)

ψ̂(n, !)qny! . (2.13)

Let us moreover denote by Vm the space of polar polynomials, i.e. the vector space gener-

ated by the monomials qny! with (!, n) ∈ P(m).

– 5 –

From Gaberdiel, Gukov,
Keller, Moore, Ooguri

4.  Most importantly, the polar part of the Jacobi form 
determines the full form. 

We now discuss the physics of this, and find a bound on
the polar coefficients for theories with gravity duals.
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IV.  Phase structure and gravity constraints

So, lets talk about gravity theories in AdS3.

 Define the “reduced mass” of a particle state in the
gravity theory to be:

Lred
0 = L0 � 1

4mJ2
0 � m

4 .

(These terms sum to -D/4m.)

* It is known since the “Farey tail” of Dijkgraaf/Maldacena/
Moore/Verlinde that the terms with             are the ones

which contribute to the polar part of the supergravity 
partition function.

Lred
0 < 0
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* In contrast, BTZ black hole states in 3d gravity are those 
states which are non-polar:

4mn� `2 > 0

SBH = 2⇡
p
mEred = ⇡

p
4mn� `2

SO: the gravity modes contributing to the polar part are 
precisely modes which are too light to form black holes.   

As the counting of these states -- the polar part -- 
determines the full genus, any bound on genera for 
theories with gravity duals can be stated in terms of

bounds on coefficients of polar terms.

c.f. Cvetic,
Larsen ’98
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Now, to obtain bounds, one must impose physical criteria.  
Two (related) criteria:

* 

1.  Known large radius models have a phase structure 
governed by a Hawking-Page transition:

Low temperatures dominated by “gas of gravitons,” high 
temperatures by black brane geometry.
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2.   The Bekenstein-Hawking entropy should come out
“right” for the black hole states.   Cardy only guarantees

this for CFT states with

� � c

while we expect in AdS3 gravity, the entropy should come
out right when 

� ⇠ c .

A third criterion, well motivated by the formal structure
of the problem:

3.  Any bound should be spectral flow invariant.
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These words can be turned into bounds as follows.

* The low-temperature elliptic genus satisfies:

• BTZ black hole states in 3d gravity are those states with 4mn� `2 > 0, and their entropy

is given by [14]

SBH = 2⇡
p
mEred = ⇡

p
4mn� `2 . (III.4)

So in fact, the supergravity modes contributing to the polar part are precisely the gravity

modes which are too light to form the smallest black holes in three dimensions. It is bounds

on the growth of the number of such modes as a function of the Lred

0

eigenvalue, that will

guarantee the phase structure we desire in a large radius gravity dual. This means that the

bound can be stated in terms of coe�cients of �P .

So, let us try to state a necessary condition for a superconformal field theory with elliptic

genus �(⌧, z) with polar part �P , to have a large radius gravity dual. As in [2], we want the

thermal ensemble for temperatures with � > 2⇡ to be governed by the ground state. We

can now reason as follows.

• In the NS sector for left-movers, the elliptic genus satisfies at the lowest temperatures

logZEG,NS(⌧ = i
�

2⇡
) =

cL
24

�, � � 2⇡ . (III.5)

To have a phase dominated by the ground state until temperatures parametrically close to

� = 2⇡ at large central charge cL = 6m, one requires22

logZEG,NS(⌧ = i
�

2⇡
) =

cL
24

� +O(1), � > 2⇡. (III.6)

• Now, we wish to translate this into constraints on the polar coe�cients. The NS sector

elliptic genus has a q-expansion of the form

ZEG,NS(⌧) = (�1)mq
m

4 ZEG

�
⌧,

⌧ + 1

2

�
=

X

n,`

(�1)m+`c(n, `) q
m

4 +n+ `

2 . (III.7)

Writing out the terms contributed by �P to the NS elliptic genus after spectral flow, one

sees that this amounts to the following requirement. First, rewriting the power of q in (III.7)

as

d(n, `) =
(m+ `)2

4m
� D(n, `)

4m
, (III.8)

we observe that indeed only the polar part �P of the elliptic genus contributes to the terms

q↵ with ↵ < 0 in the NS sector elliptic genus ZEG,NS(⌧).

7

* To keep a free energy of this form until one reaches
  , one then wishes to have:� = 2⇡

• BTZ black hole states in 3d gravity are those states with 4mn� `2 > 0, and their entropy

is given by [14]

SBH = 2⇡
p
mEred = ⇡

p
4mn� `2 . (III.4)
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Writing out the terms contributed by �P to the NS elliptic genus after spectral flow, one

sees that this amounts to the following requirement. First, rewriting the power of q in (III.7)

as

d(n, `) =
(m+ `)2

4m
� D(n, `)

4m
, (III.8)

we observe that indeed only the polar part �P of the elliptic genus contributes to the terms

q↵ with ↵ < 0 in the NS sector elliptic genus ZEG,NS(⌧).

7

We can translate this into a condition on polar coefs.
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The polar piece of the NS elliptic genus looks like:

Here,

Imposing that the excited state contributions
do not overwhelm the NS ground state, we see:

d(n, `) = (m+`)2

4m � D(n,`)
4m = n+ `

2 + m
4 .

for some � > 0. (This generalizes equation (2.12) of [2] in a minor way).

• Now, we wish to translate this into constraints on the polar coe�cients. Writing out

the terms contributed by �P to the NS elliptic genus after spectral flow, one sees that this

amounts to the following requirement. Let

p(n, `) = 4mn� `2 . (III.7)

The NS sector elliptic genus has a q-expansion of the form

Zell,NS(⌧) =
X

n,`

c(n, `)(�1)m+`q
m

4 +n+ `

2 . (III.8)

Using the identity

4mn� `2 = 4m

✓
m

4
+ n+

`

2

◆
� (m+ `)2 , (III.9)

we can rewrite the power of q in (III.8) as p(n,`)
4m

+ (m+`)2

4m
. Let us therefore define

d(n, `) =
p(n, `)

4m
+

(m+ `)2

4m
. (III.10)

The polar part of the elliptic genus then looks like

Zell =
X

(n,`):p(n,`)<0

c(n, `)e��d(n,`)

= e��d(0,�m)

X

(n,`):p(n,`)<0

c(n, `)e��[d(n,`)�d(0,�m)] . (III.11)

The maximally polar state has n = 0, ` = �m and d(0,�m) = �m
4

= � c
24

. It corresponds

to the NS vacuum. The other states have d(n, `) > d(0,�m). To avoid corrections which

violate the condition (III.6), we need that all polar terms have

c(n, `)e�2⇡[d(n,`)�d(0,�m)]  O(c1��) . (III.12)

For simplicity, we can choose as in [2] the strong constraint � = 1. Then, the condition

becomes

|c(n, `)|  e2⇡[d(n,`)�d(0,�m)] . (III.13)

This is our desired bound on the polar degeneracies.

6
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The polar part of the elliptic genus then looks like

X

(n,`):D(n,`)>0

c(n, `)e��d(n,`)

= c(0,�m) e�d(0,�m)

X

(n,`):D(n,`)>0

c(n, `)

c(0,�m)
e��[d(n,`)�d(0,�m)] . (III.9)

The maximally polar state has n = 0, ` = �m and d(0,�m) = �m
4

= � c
24

, corresponding

to the NS vacuum. The other states have d(n, `) > d(0,�m). To avoid corrections which

violate the condition (III.6), we would like to have

log
�
1 +

X

(n,`):D(n,`)>0

c(n, `)

c(0,�m)
e��[d(n,`)�d(0,�m)]

�
= O(m0) (III.10)

at � > 2⇡. Translated into a condition on the coe�cients, we require that all polar terms

have

|c(n, `)/c(0,�m)|  e2⇡[d(n,`)�d(0,�m)] . (III.11)

This is our desired bound on the polar degeneracies.

Now we will examine the thermodynamical consequences of the bound. We will see that

this bound leads to the derivation of the microscopic black hole entropy (III.4) whenever the

central charge is large and Ered > c
24

. From the assumption that the ground state dominates

the (II.12) F Note: ground state dominates in what sense? strictly speaking we need the

stronger bound |c(n, `)/c(0,�m)|  e2⇡[�D(n,`)+D(0,�m)] F we have

Zr(⌧ = i
�

2⇡
) =

r
⌧

�i

r
2

m
(�1)r

⇣
e⇡

2m/� + . . .
⌘

, � < 2⇡ (III.12)

and hence

logZr(⌧ = i
�

2⇡
) = ⇡2m/� +O(logm). (III.13)

Note that the leading term is independent of the superselection sector labelled by r. Hence

we have in the canonical ensemble for all r

Ered(�) = �@� logZ = ⇡2m/�2 (III.14)

S(�) = �(1� �@�) logZ = 2⇡2m/�. (III.15)

Changing the ensemble, we get the microscopic Bekenstein-Hawking entropy (III.4), for

all Ered > c/24.

S(E) = 2⇡
p
mEred (III.16)

8

In fact, a spectral flow invariant bound which is 
stronger than this and guarantees the appearance

of the correct black hole entropy is:

To see that these bounds guarantee the correct entropy,
one simply modular transforms:

Z(⌧ = i �
2⇡ ) =

c
24�, � > 2⇡

In English: energy
above NS vacuum.

|c(n, `)/c(0,�m)|  e2⇡
[�D(n,`)+D(0,�m)]

4m
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and finds:

Now, use the standard thermodynamic relations

The polar part of the elliptic genus then looks like
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X
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c(n, `)

c(0,�m)
e��[d(n,`)�d(0,�m)] . (III.9)

The maximally polar state has n = 0, ` = �m and d(0,�m) = �m
4

= � c
24

, corresponding
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log
�
1 +

X

(n,`):D(n,`)>0

c(n, `)

c(0,�m)
e��[d(n,`)�d(0,�m)]

�
= O(m0) (III.10)
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r
⌧
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r
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m
(�1)r

⇣
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2m/� + . . .
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Changing the ensemble, we get the microscopic Bekenstein-Hawking entropy (III.4), for

all Ered > c/24.

S(E) = 2⇡
p
mEred (III.16)
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logZ(⌧ = i �
2⇡ ) = ⇡2m

� + · · · , � < 2⇡ .
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V.  Examples

We now discuss a few examples which satisfy/do not
satisfy the kind of bound we derived.

A.   Hilbert scheme of N points on K3

Elliptic genera of symmetric products were discussed
extensively in the mid 1990s. Dijkgraaf, Moore,

Verlinde, Verlinde

One can define a generating function for elliptic genera:

A. Symn(K3)

The first example is one which we expect to satisfy the bound, and serves as a test of

the bound. A system which historically played an important role in the development of

the AdS/CFT correspondence was the D1-D5 system on K3 [9], and the duality between

the �-model with target space (K3)n/Sn and supergravity in AdS
3

was the first example of

AdS
3

/CFT
2

duality [1]. See also [19] for a more detailed analysis.

The elliptic genus of the symmetric product CFT was discussed extensively in [15]. One

can define a generating function for elliptic genera

Z(p, ⌧, z) =
X

N�0

pNZEG(Sym
N(M); q, y) . (IV.1)

which is given by [15] as

Z(p, ⌧, z) =
Y

n>0,m�0,l

1

(1� pnqmyl)c(nm,l)
. (IV.2)

where the coe�cients c(m, l) are defined as the Fourier coe�cients of the original CFT M .

ZEG(M ; q, y) =
X

m�0,l

c(m, l)qmyl. (IV.3)

If we are interested in calculating the O(q0) piece of the elliptic genus of SymN(M), we

can set m = 0 in (IV.2), giving

Z(p, ⌧, z) =
Y

n>0,l

1

(1� pnyl)c(0,l)
+O(q) (IV.4)

The most polar term of SymN(M) is given by y�mN where m is the index of the elliptic

genus of M . This is the coe�cient of y�mNpN in (IV.2), which only gets contributions from

1

(1� py�m)c(0,�m)

(IV.5)

By calculating the coe�cient of pNy�Nm in (IV.5) we get

c
Sym

NM(0,�Nm) =

✓
c(0,�m) +N � 1

N

◆
. (IV.6)

In order to find the subleading polar piece for SymN(M), we calculate the coe�cient of

the pNy�Nm+1 in (IV.2). This has contributions from

1

(1� py�m)c(0,�m)

1

(1� py�m+1)c(0,�m+1)

1

(1� p2y�m)c(0,�m)

. (IV.7)

10
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Then it is a beautiful fact that:
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the AdS/CFT correspondence was the D1-D5 system on K3 [9], and the duality between

the �-model with target space (K3)n/Sn and supergravity in AdS
3
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. (IV.6)
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We can give some checks that this satisfies our bounds for 
K3.  Consider the terms in the elliptic genus that have 

vanishing power of q: 

A. Symn(K3)

The first example is one which we expect to satisfy the bound, and serves as a test of

the bound. A system which historically played an important role in the development of

the AdS/CFT correspondence was the D1-D5 system on K3 [9], and the duality between

the �-model with target space (K3)n/Sn and supergravity in AdS
3

was the first example of

AdS
3

/CFT
2

duality [1]. See also [19] for a more detailed analysis.

The elliptic genus of the symmetric product CFT was discussed extensively in [15]. One

can define a generating function for elliptic genera
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E.g., the most polar term in           has the form  SymN y�mN

where m is the index of the N=1 CFT.

One easily sees that this gets contributions only if one 
takes the “1” from each term in the product except:
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3

was the first example of

AdS
3

/CFT
2
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yielding after a moment’s thought:
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An obvious generalization works also for the penultimate 
polar term:

The pNy�mN+1 term generically comes from multiplying a pN�1y�m(N�1) in the first term

in (IV.7) with a py�m+1 from the second term. For the special case of m = 1, it can also

come from multiplying a pN�2y�m(N�2) from the first term with a p2y�m from the third

term.

The coe�cient of pN�1y�m(N�1) in the first term is
�
c(0,�m)+N�2

N�1

�
, and the coe�cient of

py�m+1 in the second term is c(0,�m + 1). The coe�cient of pN�2y�m(N�2) in the first

term is
�
c(0,�m)+N�3

N�2

�
and the coe�cient of p2y�m in the third term is c(0,�m). Thus the

coe�cient of the penultimate polar piece is given by

c
Sym

NM(0,�Nm+ 1) =

8
><

>:

�
c(0,�m)+N�2

N�1

�
c(0,�m+ 1), if m > 1

�
c(0,�m)+N�2

N�1

�
c(0,�m+ 1) +

�
c(0,�m)+N�3

N�2

�
c(0,�m), if m = 1.

(IV.8)

For Calabi-Yau manifolds with �
0

= 2, we have c(0,�m) = 2 so the two most polar terms

simplify to

c
Sym

NM(0,�Nm) = N � 1

c
Sym

NM(0,�Nm+ 1) =

8
><

>:

Nc(0,m� 1), if m > 1

Nc(0,m� 1) + 2(N � 1), if m = 1.
(IV.9)

For M = K3, we have m = 1 and c(0,m� 1) = 20, so the normalized penultimate polar

piece asymptotes to 22. This is less than the bound e⇡ ⇠ 23.1 so we satisfy the bound (see

Figure 1).

For a generic Calabi-Yau with �
0

= 2 and m > 1, the penultimate polar piece asymptotes

to c(0,m� 1). Thus the bound (for this term) is satisfied if

|c(0,m� 1)| < e⇡ ⇠ 23.1. (IV.10)

We can do a similar calculation, and find the coe�cient in front of y�N+x for SymN(K3),

and compare to the proposed bound. We find the asymptotic largeN value for the coe�cient,

presented in Table I. In Figure 2, we plot the various polar coe�cients of Sym10(K3) against

the values allowed by the bound, again finding the bound is subsaturated as expected.

11

and so forth.  Checking against the bound:

TABLE I. Asymptotic value for coe�cient of y�N+x in SymN (K3) EG.

x Coe�cient Bound

0 1 1

1 22 23.1

2 277 535

3 2576 12392

4 19574 286751

5 128156 6.6⇥ 106

6 746858 1.5⇥ 108

7 3959312 3.6⇥ 109

8 19391303 8.2⇥ 1010

9 88757346 1.9⇥ 1012

20 40 60 80 100
N

10

15

20

25

SymN(K3) Subpolar Term

Data: �c(0,N-1)�
�c(0,N)�

Bound

FIG. 1. Here, we plot the subleading polar coe�cient in the SymN (K3) conformal field theory,

as a function of N (blue). We see that it asymptotes to a value just below the e⇡ allowed by the

bound (orange).

B. SymN (X)

Having seen that SymN(K3) satisfies the bounds, it is natural to ask: what conditions

on the elliptic genus of X would be necessary (or perhaps even su�cient) for SymN(X) to

satisfy the bounds? Here we begin to explore this question.

12
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In more detail for one large central charge theory (well,
c=120...):

�
�

�
�

�
����������

��
���

�

�

�

�
�

�
�

�
�

�
�

�
�

������
�

100 200 300 400
D(0,l)

5

10

15

20

25

30

Sym20(K3)

� Data: log� �c(0,l)�
�c(0,20)�

�

� Bound

FIG. 2. Here, we plot the O(q0) polar coe�cients of Sym20(K3) versus polarity, and also the

coe�cients allowed by the bounds. We see that at this value of c (=120), the bounds are easily

satisfied by the symmetric product conformal field theory. In fact we analytically prove that

SymN (K3) satisfies the bounds in the discussion below.

We will use the DMVV formula [15]

Z(p, ⌧, z) =
Y

n>0,m�0,l

1

(1� pnqmyl)c(nm,l)
(IV.11)

and consider the m = 0 terms

Z(p, i1, z) =
Y

n>0,l

1

(1� pnyl)c(0,l)
. (IV.12)

One further simplification: suppose the manifold X is of real dimension 4m, so the

associated supersymmetric �-model has central charge 6m (meaning the most polar term is

y�m). We will only consider terms in the EG of SymN(X) of the form y�mN+x with x < m.

Since the most polar term that comes from including a n = 2 contribution in the product

(IV.12) is pNy�mN+m, by only considering x < m, we simplify (IV.12) to

Z(p, i1, z) =
Y

l

1

(1� pyl)c(0,l)
. (IV.13)

Now it just becomes a question of determining the coe�cient of pNy�mN+x for all x < m

in (IV.13). Expanding out the product as

Z(p, i1, z) =
1

(1� py�m)c(0,�m)

⇥ 1

(1� py�m+1)c(0,�m+1)

⇥ 1

(1� py�m+2)c(0,�m+2)

. . .

(IV.14)
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The coefficients of various polarities satisfy bounds that 
admit simple analytical expressions at large N (not given).
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B.  Large N products

The poster-child for not working is a sigma model
with target        , or more generally such a product CFT.MN

* The elliptic genus is multiplicative: 

ZEG(MN ) = (ZEG(M))N .

* Suppose the subleading polar term for M is k.

* Then, that for the product is Nk.  This (and higher 
terms) grows with N; the bounds are fixed at large N.
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C.  Calabi-Yau spaces of high dimension  

It is natural to ask whether some simple Calabi-Yau 
manifolds of high dimension (but not symmetric products)

may satisfy the bound?  The simplest family to check
is given by hypersurfaces of dimension d in         . 

These spaces all admit a
soluble Landau-Ginzburg 

point in moduli space.

CPd+1
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Their elliptic genera were computed in the 1990s:

FIG. 3. Here, we plot the polar coe�cients of the product conformal field theory with target K320.

D. Calabi-Yau spaces of high dimension

To provide a slightly more nontrivial test, we discuss the elliptic genera of Calabi-Yau

sigma models with target space X(d) given by the hypersurface of degree d+2 in CPd+1, e.g.

d+1X

i=0

zdi = 0 . (IV.24)

We have chosen these as the simplest representatives among Calabi-Yau manifolds of di-

mension d; as they are not expected to have any particularly special property uniformly

with dimension, we suspect this choice is more or less representative of the results we could

obtain by surveying a richer class of Calabi-Yau manifolds at each d. In any case we will

settle with one Calabi-Yau per complex dimension.

The elliptic genus for these spaces is independent of moduli, and can be conveniently

computed by viewing them in the Landau-Ginzburg orbifold phase [16]. This yields the

formula

Zd
EG(⌧, z) =

1

d+ 2

d+1X

k,`=0

y�`
✓
1

�
⌧,�d+1

d+2

z + `
d+2

⌧ + k
d+2

�

✓
1

�
⌧, 1

d+2

z + `
d+2

⌧ + k
d+2

� (IV.25)

Many further facts about elliptic genera of Calabi-Yau spaces can be found in [17].

We computed all polar coe�cients numerically for d = 2, 4, ..., 36. First, we discuss this

data. Then, we provide a simple analytical proof of bound violation valid for values of d

(just following from the behavior of the subleading polar term).

In Figures 4, 5, and 6 we plot the coe�cients of the polar pieces against polarity for

Calabi-Yau 10, 20, and 36-folds, respectively. In Figure 7, we plot the subleading polar

16

Kawai,
Yamada,

Yang

These guys all violate the bound in a spectacular way.
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FIG. 6. Here, we plot the polar coe�cients of the CY hypersurface in CP37.

FIG. 7. Here, we plot the subleading polar coe�cients of the Calabi-Yau elliptic genera against

the dimension.

or

h1,d�1 =
(d+ 2)⇥ (d+ 3)⇥ . . .⇥ (2d+ 3)

1⇥ 2⇥ . . .⇥ (d+ 2)
� (d+ 2)2

=

✓
2d+ 3

d+ 2

◆
� (d+ 2)2. (IV.28)

The rest vanish except for h1,1 = 1. Thus we get that

c
0,m�1

=

✓
2d+ 3

d+ 2

◆
� (d+ 2)2 + 1. (IV.29)
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In fact, we can easily understand this analytically.  A
mathematician’s definition of the elliptic genus is:

(2.7) [17]. The other is the chiral U(1) anomalies. In fact we have the left and right U(1)
currents JL, JR

(JL
−, JL

+) = (habλ
aλb, 0), (JR

− , JR
+) = (0, gijψ

iψj). (2.12)

with an anomaly c1(E), c1(T ) respectively. In particular the vector U(1) current JV =
JL − JR can have an anomaly as opposed to the case of (2,2) sigma models. Thus if we
demand the absence of the vector U(1) anomaly in addition to (2.7) we are led to the
conditions familiar in heterotic string compactifications

c1(E) = c1(T ) = 0 , c2(E) = c2(T ) , (2.13)

which actually means that all the local anomalies are cancelled. We will assume (2.13) in
the remainder of this paper. In particular X is a Calabi-Yau manifold.

The elliptic genus (2.3) can be expanded as

ZE(τ, z) = (
√
−1)r−Dq

r−D

12 y− r

2

∫

X
ch
( ∞
⊗

n=1

∧

−yqn−1 E ⊗
∞
⊗

n=1

∧

−y−1qn E∗

⊗
∞
⊗

n=1
SqnT ⊗

∞
⊗

n=1
SqnT ∗

)

td(X)

= (
√
−1)r−Dq

r−D

12 y− r

2

[

χy(E) + q(
∑r

s=0{(−y)s+1χ(∧sE ⊗ E)

+(−y)s−1χ(∧sE ⊗ E∗) + (−y)sχ(∧sE ⊗ (T ⊕ T ∗))}) + · · ·
]

,

(2.14)

where

χy(E) =
r
∑

s=0

(−y)sχ(∧sE) (2.15)

and
∧

t
E =

r
∑

s=0

ts(∧sE) , StE =
∞
∑

s=0

ts(SsE) , etc. (2.16)

In the second equality of (2.14) we have used the Riemann-Roch-Hirzebruch theorem

χ(E) :=
D
∑

l=0

(−1)l dim H l(X, E) =
∫

X
ch(E) td(X) . (2.17)

Using the Born-Oppenheimer approximation, Distler and Greene [2] identified the
ground states of the (R,R) sector, which have energy ((r−D)/12, 0), with the cohomology
groups

⊕

l,s H l(X,∧sE). The correspondence between the two objects is as follows.

∣

∣

∣

∣

qL = s −
r

2
, qR = l −

D

2

〉

R,R
⇐⇒ H l(X,∧sE). (2.18)

5

from which it follows that for a Calabi-Yau manifold,

we see that we can get a pNy�mN+x term by for example, extracting a pN�xy�m(N�x) from

the first term in (IV.14) and a pxy(�m+1)x from the second term in (IV.14); or extracting

a pN�x+1y�m(N�x+1) from the first term, a px�2y(x�2)(�m+1) from these second term, and a

py�m+2 from the third.

In general there are P(x) ways to get such a term where P is the partition function. If a

partition is written as {k
1

, . . . kx} s.t. k
1

+ 2k
2

+ . . .+ xkx = x and K := k
1

+ k
2

+ . . .+ kx,

then we get a pNy�mN+x term by taking pN�Ky�m(N�K) from the first term in (IV.14), and

taking pkiyki(�m+i) from the (i+ 1)th term. Including the combinatorial factors, this means

that the coe�cient of pNy�mN+x is simply given by

c
Sym

N

(X)

(0,�mN + x) =

X

{k1,...kx}2P(x)

✓
c(0,�m) +N �K � 1

N �K

◆ xY

i=1

✓
c(0,�m+ i) + ki � 1

ki

◆
(IV.15)

Now we just normalize by the coe�cient of y�mN in SymN(x), which is given by

c
Sym

N

(X)

(0,�mN) =

✓
c(0,�m) +N � 1

N

◆
. (IV.16)

Our constraint is therefore

X

{k1,...kx}2P(x)

✓
c(0,�m) +N �K � 1

N �K

◆ xY

i=1

✓
c(0,�m+ i) + ki � 1

ki

◆

<

✓
c(0,�m) +N � 1

N

◆
e⇡x (IV.17)

for all x < m.

It turns out that the coe�cients c(0, p) of the elliptic genera of Calabi-Yau spaces are

determined simply by topological invariants:

c(0,�m+ i) =
X

k

(�1)i+khk,i . (IV.18)

In particular, in the case without further reduced holonomy, one has c(0,�m) = 2, and

(IV.17) simplifies to

X

{k1,...kx}2P(x)

N �K + 1

N + 1

xY

i=1

✓
c(0,�m+ i) + ki � 1

ki

◆
< e⇡x. (IV.19)

By going through the extensive lists of existing toric Calabi-Yau hypersurfaces, one can

identify promising candidate spaces that satisfy this bound. For instance, the hypersurface

14
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 Now, deformation theory tells us that for the family of 
Calabi-Yau spaces under consideration:

FIG. 6. Here, we plot the polar coe�cients of the CY hypersurface in CP37.

FIG. 7. Here, we plot the subleading polar coe�cients of the Calabi-Yau elliptic genera against

the dimension.

or

h1,d�1 =
(d+ 2)⇥ (d+ 3)⇥ . . .⇥ (2d+ 3)

1⇥ 2⇥ . . .⇥ (d+ 2)
� (d+ 2)2

=

✓
2d+ 3

d+ 2

◆
� (d+ 2)2. (IV.28)

The rest vanish except for h1,1 = 1. Thus we get that

c
0,m�1

=

✓
2d+ 3

d+ 2

◆
� (d+ 2)2 + 1. (IV.29)
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FIG. 6. Here, we plot the polar coe�cients of the CY hypersurface in CP37.

FIG. 7. Here, we plot the subleading polar coe�cients of the Calabi-Yau elliptic genera against

the dimension.

or

h1,d�1 =
(d+ 2)⇥ (d+ 3)⇥ . . .⇥ (2d+ 3)

1⇥ 2⇥ . . .⇥ (d+ 2)
� (d+ 2)2

=

✓
2d+ 3

d+ 2

◆
� (d+ 2)2. (IV.28)

The rest vanish except for h1,1 = 1. Thus we get that

c
0,m�1

=

✓
2d+ 3

d+ 2

◆
� (d+ 2)2 + 1. (IV.29)

18Compare to the (large d)  bound -- e⇡.

From this it follows immediately that:
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C.  The Monster (just for fun) Thanks to 
Xi Yin

Can we make a large radius gravity theory with Monster 
symmetry by considering the symmetric product of the

famous FLM orbifold of the Leech lattice?

1 A Chiral CFT with a Stringy Dual?

We will begin the purely chiral monster CFT (denote byM) with left central charge c =
24 (and no right moving sector), and consider its N -th symmetric product Sym

N
(M).

Since all operators in this CFT have dimension equal to spin, the dual theory in the

bulk AdS3 is expected to be a higher spin gauge theory. Since there is a left moving

stress energy tensor, we expect the bulk theory to be some sort of higher spin extension

of chiral gravity. While such a duality is expected on general grounds for any CFT, it

is typically only useful when the bulk theory is weakly coupled, in the sense that the

AdS radius is much bigger than the Planck scale (but not necessarily the string scale).

This requires the consideration of a family of CFTs with a suitable large N limit.

By suitable, we mean that the low lying operator spectrum (operators of fixed finite

dimensions) depends weakly on N at large N , and asymptotes to a discrete spectrum

with finite degeneracies in the infinite N limit. This is a property of N -th symmetric

product CFTs.

1

The partition function of Sym

NM is computed via the formula of [DVV] and

Borcherds’ product formula,

1X

N=0

e2⇡iN�ZSymN (⌧) = exp

" 1X

N=1

e2⇡iN�TNJ(⌧)

#
=

e�2⇡i�

J(�)� J(⌧)
.

(1)

It follows that

ZSymN (⌧) =

I
d�

e�2⇡i(N+1)�

J(�)� J(⌧)

=

X

(

a b
c d )

2�1\SL(2,Z)

e�2⇡i(N+1)a⌧+b
c⌧+d

(c⌧ + d)2
2⇡i

J 0
(⌧)

= P2(q
�N�1

)

�(⌧)

E4(⌧)2E6(⌧)

(2)

where Pw(f(⌧)) stands for the weight w Poincaré series of f(⌧), q ⌘ e2⇡i⌧ , and �(⌧) is
the weight 12 cusp form. Note that the N -dependence is entirely encoded in the factor

P2(q
�N�1

) = q�N�1
+O(q0). (3)

We propose that P2(q�N�1
) should be interpreted as the contribution from (BTZ) black

hole states, which only exist starting at dimension N + 1. The rest is the partition

1
This is because operators below some fixed dimension can only come from twistors sectors involving

permutations in SN up to some fixed length, and the number of such operators does not change as N
increases beyond some value.

1

1 A Chiral CFT with a Stringy Dual?

We will begin the purely chiral monster CFT (denote byM) with left central charge c =
24 (and no right moving sector), and consider its N -th symmetric product Sym

N
(M).

Since all operators in this CFT have dimension equal to spin, the dual theory in the

bulk AdS3 is expected to be a higher spin gauge theory. Since there is a left moving

stress energy tensor, we expect the bulk theory to be some sort of higher spin extension

of chiral gravity. While such a duality is expected on general grounds for any CFT, it

is typically only useful when the bulk theory is weakly coupled, in the sense that the

AdS radius is much bigger than the Planck scale (but not necessarily the string scale).

This requires the consideration of a family of CFTs with a suitable large N limit.

By suitable, we mean that the low lying operator spectrum (operators of fixed finite

dimensions) depends weakly on N at large N , and asymptotes to a discrete spectrum

with finite degeneracies in the infinite N limit. This is a property of N -th symmetric

product CFTs.

1

The partition function of Sym

NM is computed via the formula of [DVV] and

Borcherds’ product formula,

1X

N=0

e2⇡iN�ZSymN (⌧) = exp

" 1X

N=1

e2⇡iN�TNJ(⌧)

#
=

e�2⇡i�

J(�)� J(⌧)
.

(1)

It follows that

ZSymN (⌧) =

I
d�

e�2⇡i(N+1)�

J(�)� J(⌧)

=

X

(

a b
c d )

2�1\SL(2,Z)

e�2⇡i(N+1)a⌧+b
c⌧+d

(c⌧ + d)2
2⇡i

J 0
(⌧)

= P2(q
�N�1

)

�(⌧)

E4(⌧)2E6(⌧)

(2)

where Pw(f(⌧)) stands for the weight w Poincaré series of f(⌧), q ⌘ e2⇡i⌧ , and �(⌧) is
the weight 12 cusp form. Note that the N -dependence is entirely encoded in the factor

P2(q
�N�1

) = q�N�1
+O(q0). (3)

We propose that P2(q�N�1
) should be interpreted as the contribution from (BTZ) black

hole states, which only exist starting at dimension N + 1. The rest is the partition

1
This is because operators below some fixed dimension can only come from twistors sectors involving

permutations in SN up to some fixed length, and the number of such operators does not change as N
increases beyond some value.

1

Borcherds

The Monster CFT does have N=1 supersymmetry; one
can define elliptic genera for theories with at least (0,1)

SUSY (one gets modular forms under     ). �✓

Thursday, December 18, 14



One can prove that for this N-fold symmetric 
product:

function of perturbative states (graviton and higher spin fields in AdS3),

F (⌧) =
�(⌧)

E4(⌧)2E6(⌧)
=

1X

n=1

anq
n.

(4)

In the N ! 1 limit (where we expect the dual theory to become free), after shifting

away the vacuum energy, the partition function can be written in the form

qNZSymN (⌧) = q�1F (⌧) +O(qN+1
). (5)

This makes it clear that F (⌧) should be interpreted as the partition function of free

higher spin particles in AdS3. The coe�cients an in (4) can be extracted from the

contour integral

an =

I
d⌧q�n �(⌧)

E4(⌧)2E6(⌧)
.

(6)

The integrand has a simple pole at ⌧ = i and a double pole at ⌧ = ! =

±1+
p
3i

2 , as well

as their SL(2,Z) images. The residue at ⌧ = i is

e2⇡n
�2⇡i�(i)

E4(i)2E 0
6(i)

⇡ 0.000795052e2⇡n,
(7)

and the residue at ⌧ = ! is given by

@⌧
2⇡i


e�2⇡in⌧ �(⌧)

(

1
2⇡iE

0
4(⌧))

2E6(⌧)

�����
⌧=!

⇡ (0.00180748n+ 0.00232521)e
p
3⇡n.

(8)

These are the dominant contribution to an when n � 1. The exponential growth in

the energy n (in AdS units) is characteristic of the growth of string oscillator modes,

suggesting that the dual is a string theory in AdS3.

2
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�����
⌧=!
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(8)

These are the dominant contribution to an when n � 1. The exponential growth in

the energy n (in AdS units) is characteristic of the growth of string oscillator modes,

suggesting that the dual is a string theory in AdS3.

2

The coefficients can be extracted by contour integral
methods.  Interestingly:

* Our bounds are satisfied.
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* However, in the regime 

1 ⌧ n ⌧ N

(where n doesn’t depend parametrically on N in any way),
the coefficients have growth

an ⇠ e2⇡n .

Interpretation:  This is a large radius gravity theory in 
Planck units, but the curvature is ~ the string scale.  We

might instead prefer to focus on theories with:

MPlanck � Mstring � 1
Rcurvature

Hagedorn
growth
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Take away lessons:

* One can associate effectively computable modular objects 
(determined by polar coefficients), with SCFT2s. 

* Simple physical requirements then bound the polar 
coefficients, leading to constraints that likely only a tiny

fraction of all candidate theories satisfy.

* More refined tests distinguishing between low-energy
supergravity theories and low-tension string theories (in

units of the curvature) are available.
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