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l. Introduction and motivation

AdS/CFT gives us our most concrete definition
of non-perturbative quantum gravity.

In general, and in particular in 2d, CFTs are
relatively well understood (compared to
quantum gravity).

Natural question: which 2d CFTs admit
large-radius gravity duals?
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There have been interesting recent works aimed
at clarifying this question. Hartman,

Keller,
Stoica

In general,a 2d CFT has a torus partition function
which is modular invariant:

\ *—\ Z(q7 CD — Tr (C]LO ql_zo) g = p2TiT
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However, it is in general difficult to compute. And if the
CFT comes with exactly marginal operators, Z of course
depends sensitively on the point in moduli space one
chooses.

Is there a cruder measure which is:

a) calculable

b) can tell us if the CFT admits a gravity
description anywhere in its moduli space?
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We won'’t succeed in constructing a fool-proof such
measure. But we will make some simple observations
about one such candidate here, and describe results

of computations checking several canonical classes
of 2d CFTs.

ll. The elliptic genus

We will sacrifice some generality by considering 2d
theories with some amount of supersymmetry.

This is advantageous because it allows one to define
supersymmetric indices.
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The canonical example is the Witten index.

Consider a supersymmetric quantum mechanics
theory with a supercharge satisfying

QZ =0, {QaQT} = H

Assume the theory also has a fermion # symmetry,
and Q is odd.

Then one can easily prove two powerful statements:
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-- all states have non-negative energy

-- states at positive energy are paired by
the action of Q

Now, one can define an index;

* The Witten index A
E.T BBBFFF
B _\F
ZWitten o TI’( 1) E,T BF Bosons
—n —n Fermions
- B F E,4+ BBFF
. F _H
—Tr((_l) q ) 0 LBBBBF
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(Note: | avoid here, and later; d
the spectrum is not discrete. T

iscussing subtleties that can arise when
nese are important in appearance of e.g.

mock modu

ar forms in physics.)

The Witten index is just a number. A quantity with more
information -- an entire g-series -- is available in
supersymmetric 2d QFTs.

We'll mostly focus on theories with at least (2,2)
supersymmetry.

This means that each chirality has generators

I,

Gt .G—.,J .
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Famous examples including Calabi-Yau sigma models,

and the Hilbert scheme of N points on a K3 surface, dual
to AdSs x S° x K3 gravity.

In any such theory we can define the elliptic genus:

Zia(7,2) = Trpp ((—1)7+Frgloyogho )

\

Unpacking the right-moving stuff, we
see it is a right-moving Witten index!

S0 - in theories with discrete spectrum - this will give
us a holomorphic modular object.
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In fact, it is what is known as a weak Jacobi form of
weight 0 and index c/6.

lll. Facts about weak Jacobi forms

c.f. Dabholkar,
Murthy, Zagier

A weak Jacobi form is a holomorphic function on H x C
which satisfies:

at + b z
ct+d et +d

. cz2 b
) _ (CT 4 d)w€27m’m07+d¢(’7', Z) ] (a ) ~ SL(Q,Z)
c d

¢(7_7 o4 T + ZI) _ 6_2mm(€27+262)¢(7, Z) | g) Ve
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These invariances imply in particular that we may
expand the function as:

o(1,2) = ) c(n, 0)q"y',

n el

c(n,l) = (—1)c(n, —1).
Define the polarity of a given term by:
D(n,t) = {? — 4mn = —p(n, {)

This is useful for the following reasons:
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|. The theories we consider have spectral flow invariance:
LO — L() -+ (9]() + 92m

Jo — Jog + 20m

This allows one to relate all Fourier coefficients to those
with |I| < m .

2. One can define the polar part of the Jacobi form: the
sum of terms with negative polarity.

3. The full polar part of the form can be determined by
just the terms in the polar region P,,:
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From Gaberdiel, Gukoy,
Keller, Moore, Ooguri

Figure 1: A cartoon showing polar states (represented by “e”) in the region P Spectral flow

by 6 = % relates these states to particle states in the NS sector of an N = 2 superconformal field

theory which are holographically dual to particle states in AdSs.

4. Most importantly, the polar part of the Jacobi form
determines the full form.

We now discuss the physics of this, and find a bound on
the polar coefficients for theories with gravity duals.
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IV. Phase structure and gravity constraints

S0, lets talk about gravity theories in AdS3.

Define the “reduced mass” of a particle state in the
gravity theory to be:

red __ 1 2 m

(These terms sum to -D/4m.)

* 1t is known since the “Farey tail” of Dijkgraaf/Maldacena/
Moore/Verlinde that the terms with L4 < 0 are the ones
which contribute to the polar part of the supergravity
partition function.
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*In contrast, BTZ black hole states in 3d gravity are those
states which are non-polar:

dmn — 0?2 >0

c.f. Cvetic,

SBH — 277\/mEred — 7T\/4mn — 82 Larsen "98

SO: the gravity modes contributing to the polar part are
precisely modes which are too light to form black holes.

As the counting of these states -- the polar part --

determines the full genus, any bound on genera for

theories with gravity duals can be stated in terms of
bounds on coefficients of polar terms.
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Now, to obtain bounds, one must impose physical criteria.
Two (related) criteria:

|. Known large radius models have a phase structure
governed by a Hawking-Page transition:

I ———=

Thermal AdS AdS—-Sch. black hole

Low temperatures dominated by “gas of gravitons,” high
temperatures by black brane geometry.
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2. The Bekenstein-Hawking entropy should come out
“right” for the black hole states. Cardy only guarantees
this for CFT states with

A > c

while we expect in AdS3 gravity, the entropy should come
out right when

A~ c.

A third criterion, well motivated by the formal structure
of the problem:

3. Any bound should be spectral flow invariant.
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These words can be turned into bounds as follows.

*The low-temperature elliptic genus satisfies:

, 5 Cy,
Og EG,NS(T 227r) 245, 8> 21

*To keep a free energy of this form until one reaches
5 = 2m, one then wishes to have:

. 6 Cr,
——) = | 1 27T,
logZpa ns(T ZQW) 246 O(1), B> 2n

We can translate this into a condition on polar coefs.
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The polar piece of the NS elliptic genus looks like:

Zell _ Z (n 6) —Bd(n,0)

(n,£):p(n,£)<0
_ e—ﬂd(O,—m) Z (TL g) [d(n,£)—d(0,—m)] .
(n,0):p(n,f)<0

Here,

d(n,0) = (mt” _ D)y £y m

Imposing that the excited state contributions
do not overwhelm the NS ground state, we see:
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c(n, 0)/e(0, —m)| < e2rtlln=d0m)

In fact, a spectral flow invariant bound which is
stronger than this and guarantees the appearance

of the correct black hole entropy is:
In English: energy

/ above NS vacuum.

[—=D(n,£)+D(0,—m)]

lc(n, £)/c(0, —m)| < e*7 am

To see that these bounds guarantee the correct entropy,
one simply modular transforms:

Z(r=is)=&B, B>2r
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and finds:

logZ(T:i%):WZ%Jr---, B < 2m .

Now, use the standard thermodynamic relations

EY(B) = —0glog Z = n°m/3°
S(B) = —(1 — B0s)log Z = 2m°m/ .

One sees immediately that:

S(E) = 2rVmEred
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V. Examples

We now discuss a few examples which satisfy/do not
satisfy the kind of bound we derived.

A. Hilbert scheme of N points on K3

Elliptic genera of symmetric products were discussed
extensively in the mid 1990s. Dilkgrast, Moore,

Verlinde, Verlinde
One can define a generating function for elliptic genera:

Z(p,7,2) =Y P Zpe(Sym"™(M);q.y) .

N2>0
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Then it is a beautiful fact that;:

Z(p,T,2) = H :

— mnagmagd\c(nm,l)
wsomzog (1~ P0"Y)

Zpa(M;q,y) = Y  c(m,D)q™y.

m>0,l

We can give some checks that this satisfies our bounds for
K3. Consider the terms in the elliptic genus that have
vanishing power of q:

Z(p,T,2) = H 1 - O(q)

_ mng l\e(0,0)
o L=y
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E.g., the most polar term in Sym”™ has the form y~™"

where m is the index of the N=1 CFT.

One easily sees that this gets contributions only if one
takes the “|” from each term in the product except:

1
(1 _ py—m)c(O,—m)

yielding after a moment’s thought:

c(0,—m)+ N —1
CSYmNM(()? _Nm) — ( N ) '
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An obvious generalization works also for the penultimate
polar term:

(C(O’_m)_+N_2) c(0,—m + 1), if m>1
CSymNM(07 —Nm + 1) =

(c(o,—m)+N—2) c(0, —m + 1) + (c(o,—]@;N—?,)C(Oj “m), ifm=1

and so forth. Checking against the bound:

Sym"(K3) Subpolar Term

25

20 &
a
- @
@
o

o Data: L<ON-1L
| c(O,N) |

- Bound
15 F

10
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In more detail for one large central charge theory (well,
c=120...):

Sym?°(K3)
30
)
o
25f %
r o
! ® e 1c(0,1)|
20f .. e Data: Iog( 5(0.20) | )
i °
15F ® Bound
L o
[ °
10 N o
r o
5 [
................... 4 D(0,))
100 200 300 400

The coefficients of various polarities satisfy bounds that
admit simple analytical expressions at large N (not given).
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B. Large N products

The poster-child for not working is a sigma model
with target M" , or more generally such a product CFT.

*The elliptic genus is multiplicative:
Zia(MN) = (Zea (M) .
* Suppose the subleading polar term for M is k.

*Then, that for the product is Nk. This (and higher
terms) grows with N; the bounds are fixed at large N.




C. Calabi-Yau spaces of high dimension

It is natural to ask whether some simple Calabi-Yau
manifolds of high dimension (but not symmetric products)
may satisfy the bound? The simplest family to check
is given by hypersurfaces of dimension d in CP%*!

/'—‘)_ : arge Volume Limit
/ \ These spaces all admit a

- gae— soluble Landau-Ginzburg

\ 4 . ° °
\ / point in moduli space.
\'.~ <~ Gepner point
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Their elliptic genera were computed in the 1990s:

d+1 Cdell 0,k .
74 (7, 2) o (1. -7+ d+27_ + 755) Y':;V;Z';
d+2k£ 0 6)1 (T’m’z_'_mT_'_m) Yang

These guys all violate the bound in a spectacular way.

CY36 Polar Coefficients

_h°'o

o [
1200° o 0o

Q. . o © : o
100 © o’ L ‘. .

- o o 1

L o . —_
s0[ ° . o Data: Iog(2 | c(n, l)|)

L ¢ o °
50 Bound

® [
40
20
||||||||||||||||||||||||||||||||| D(n,l)
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In fact, we can easily understand this analytically. A
mathematician’s definition of the elliptic genus is:

ZE(Ty Z) — (1 /_1)T_Dq%y_% ¥ Ch( @1 /\_yqn—l E ® @1 /\_y—lqn E*
® &51 ST & <§1 San*) td(X)

= (V=1 Py E [y (B) + (i of{ (—y)* "' X(NE ® E)
=y T XNE@ E) + (—y) X(WE@ (T O T} + -],

from which it follows that for a Calabi-Yau manifold,

c(0, —m +1i) = » (=1)"Fpk .

k
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Now, deformation theory tells us that for the family of
Calabi-Yau spaces under consideration:

pLd—1 _ (d+2)x(d+3)x...x(2d+3)
B 1 x2x...x(d+2)

_<§f;3-4d+m%

From this it follows immediately that:

2d + 3
an1:<d+2>—4d+@?+L

(d + 2)*

Compare to the (large d) bound -- €.
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C. The Monster (just for fun) ot

Can we make a large radius gravity theory with Monster
symmetry by considering the symmetric product of the
famous FLM orbifold of the Leech lattice!?

Z 627TiNJZSymN (7‘) — (o) — J(T). Borcherds
N=0

The Monster CFT does have N=1| supersymmetry; one
can define elliptic genera for theories with at least (0, 1)
SUSY (one gets modular forms under I'g).
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One can prove that for this N-fold symmetric
product:

Here,

The coefficients can be extracted by contour integral
methods. Interestingly:

* OQur bounds are satisfied.
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* However, in the regime

l<Kn<<« N

(where n doesn’t depend parametrically on N in any way),

the coefficients have growth

Hagedorn
growth

<
an ~ €™

Interpretation: This is a large radius gravity theory in
Planck units, but the curvature is ~ the string scale. Ve
might instead prefer to focus on theories with:

MPlanck > Mstring > R L

curvature
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Take away lessons:

* One can associate effectively computable modular objects
(determined by polar coefficients), with SCFT2s.

* Simple physical requirements then bound the polar
coefficients, leading to constraints that likely only a tiny
fraction of all candidate theories satisfy.

* More refined tests distinguishing between low-energy
supergravity theories and low-tension string theories (in
units of the curvature) are available.
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